

A facile two-carbon ring expansion process based on the 2-cyano-1-vinylcycloalkanol system

Kak-Shan Shia, a.* Ning-Wei Jan, Jia-Liang Zhu, Tai Wei Ly and Hsing-Jang Liu a.b.*

^aDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, China

^bDepartment of Chemistry, University of Alberta, Edmonton, Alberta, T6G2G2, Canada

Received 24 April 1999; accepted 9 July 1999

Abstract

Upon exposure to potassium hydride in THF in the presence of 18-crown-6, several 2-cyano-1-vinylcycloalkanol derivatives were found to undergo ring enlargement to give the corresponding γ-cyano cycloalkanones in synthetically useful yields. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: ring transformations; alcohols; cyano compounds; ketones.

There have been extensive studies in recent years on two-carbon ring expansion via rearrangement of the 1-vinylcycloalkanol system with an activating group attached to C-2 (Scheme 1).^{1,2} In spite of a large variation of activating groups studied, the process does not appear to be highly useful in general. With the exception of the strained cyclobutanol system³ and a few conformationally rigid molecules,⁴ the reaction often led to the formation of a complex mixture. We have now observed that the cyano group can serve as an effective activating group. With the assistance of this functionality, a variety of 1-vinylcycloalkanols were shown to undergo two-carbon ring expansion with facility.

Scheme 1.

The ring expansion of 2-cyano-1-vinylcycloalkanols was readily effected by treatment with potassium hydride in THF in the presence of a small amount of 18-crown-6. A typical experiment is as follows. To

^{*} Corresponding authors.

a suspension of potassium hydride (35% in mineral oil, 174 mg, 1.52 mmol, pre-washed with n-hexane) in THF (6 mL) at 0°C under a nitrogen atmosphere, were sequentially added THF solutions (5 mL each) of vinyl alcohol 1⁵ (122 mg, 0.51 mmol) and 18-crown-6 (201 mg, 0.76 mmol). The reaction mixture was heated under reflux for 3 h, chilled to 0°C, and acidified with saturated NH₄Cl and 2N HCl (4 mL each). Work-up in the usual manner with ether extraction gave cyano ketone 2 (88 mg, 72% yield) after chromatographic purification (silica gel, 10% ethyl acetate in n-hexane). This two-carbon ring expansion process is apparently general. A variety of 2-cyano-1-vinylcycloalkanols (1, 3-10) with diverse ring sizes (five-, six-, seven- and 12-membered rings) were examined. As shown in Table 1, in each case the ring enlargement occurred readily giving rise to the corresponding y-cyano cycloalkanone (2, 11-18) in synthetically useful yield (51-86%). It is noteworthy that the rearrangement of the five-membered ring compounds (entries 5-7) was extremely facile; each reaction was shown to be complete within 10 min. Even for the formation of mid-sized eight- (entries 1-3 and 8) and nine-membered rings (entry 9), respectively, from six- and seven-membered starting substrates, the reaction also took place rather smoothly within a short period of time (2-6 h) with the exception of the transformation of compound 4⁵ to 12⁷ (entry 3) which took about one day. The process is also applicable to the preparation of large ring ketones. A case in evidence is the rearrangement of 1-vinyl-1-cyclododecanol 58 which gave, after 1 h, the corresponding 14-membered ring ketone 13 (entry 4).

The starting 2-cyano-1-vinylcycloalkanols were readily prepared by treatment of the corresponding 2-cyanocycloalkanones⁹ with vinylmagnesium bromide with or without the presence of cerium(III) chloride. ¹⁰ As expected, with the assistance of cerium chloride the yields were generally enhanced. This was particularly true with the five-membered ring compounds. In all of these cases, when vinylmagnesium bromide was used, the desired product was obtained in low yield (\sim 40%) along with the recovered starting material even after a long period of reaction time. With the addition of cerium chloride, however, yields were greatly enhanced. As an example, when cyano ketone 19 was treated with vinylmagnesium bromide (THF, -78° C, 3 h), the desired addition products were formed in 43% yield along with a 17% recovery of the starting material. When the reaction was carried out with preformed cerium chloride-vinylmagnesium bromide complex under the same conditions, adduct $6a^{5}$ and its diastereomer 6b (1:1) were produced in virtually quantitative yield.

The above results suggest that the cyano group is a useful activating group which makes the two-carbon ring expansion via the 1-vinyl-1-cycloalkanol system a viable general synthetic process. The cyano group appears to be quite unique in this regard. In sharp contrast to compound 1 which gave the ring enlargement product 2 in good yield, the corresponding carbomethoxy derivative 20 underwent extensive decomposition upon exposure to potassium hydride under similar conditions.

Mechanistically, two pathways have been proposed for the two-carbon ring expansion process involving 1-vinyl-1-cycloalkanols, namely, the concerted [1,3] sigmatropic rearrangement and the stepwise ring opening and closure process. ^{3c,11} In the present case, the latter pathway appears to be in operation as suggested by the following observations. Upon treatment with potassium hydride under the aforementioned conditions for 3 h, cyano alcohol 4 was completely consumed, and its diastereomers 21a and 21b (1.5:1) were formed in 58% yield along with a 21% yield of the ring enlargement product 12⁷, which was also produced in 71% yield upon further treatment of 21a and 21b (Scheme 2).⁶

Table 1
Two-carbon ring expansion of 2-cyano-1-vinylcycloalkanols

	—()n	IUL }	\ /n CN	
Entry	Substrate ⁶	Time	Product ⁶	% Yield
1	OH Ph	3 h	O Ph	72
2	OH CN 3	4 h	CN 11	54
3	OH CH ₃ CN	22 h	CH ₃ CN 12	71 ⁷
4 ⁸	OH CH ₃ CN 5	1 h	CH ₃ CN	51
5	Ph CN or epimer 6b	10 min	O Ph	~65
6	OH (CH ₂) ₅ CH ₃ CN or epimer 7b	5 min	O (CH ₂) ₅ CH	1 ₃ ~65
7	OH "CN or epimer 8b	10 min	O CN 16	~55
8	OH CH ₃ CN 9	6 h	CH ₃	81 17
98	OH CH ₃ CN 10	2 h	CH; CN	86 18

Scheme 2.

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Natural Sciences and Engineering Research Council of Canada for financial support.

References

- (a) Hesse, M. Ring Enlargement in Organic Chemistry; VCH: Weinheim, 1991; pp. 53-94; (b) Wilson, S. R. In Organic Reactions; Paquette, L. A.; Beak, P.; Ciganek, E.; Curran, D.; Hegedus, L.; Kelly, R. C.; Overman, L. E.; Roush, W.; Sih, C.; Smith III, A. B.; Uskokovic, M.; White, J. D., Eds.; John Wiley & Sons: New York, 1993; Vol. 43, Chapter 2; (c) Molander, G. A. Acc. Chem. Res. 1998, 31, 603-609.
- 2. Thies, R. W.; Daruwala, K. P. J. Org. Chem. 1987, 52, 3798-3806 and references cited therein.
- (a) Jackson, D. K.; Narasimhan, L.; Swenton, J. S. J. Am. Chem. Soc. 1979, 101, 3989-3990; (b) Cohen, T.; Ouellette, D.; Pushpananda, K.; Senaratne, A.; Yu, Lin. C. Tetrahedron Lett. 1981, 35, 3377-3380; (c) Spangler, L. A.; Swenton, J. S. J. Org. Chem. 1984, 49, 1800-1806; (d) Cohen, T.; Yu, L. C.; Daniewski, W. M. J. Org. Chem. 1985, 50, 4596-4600.
- 4. Lee, T. H.; Liao, C. C.; Liu, W. C. Tetrahedron Lett. 1996, 37, 5897-5900.
- 5. The structure of this compound was confirmed by X-ray analysis.
- 6. Representative spectral data: compound 1 (mp 97°C (ethyl acetate/n-hexane)): IR (cast, CHCl₃): 3465 (OH), 2235 cm⁻¹ (CN); ¹H NMR (300 MHz, CDCl₃): δ 7.30–7.23 (m, 5H), 6.30 (dd, *J*₁=17.2 Hz, *J*₂=10.7 Hz, 1H), 5.47 (d, *J*=17.2 Hz, 1H), 5.35 (d, *J*=10.7 Hz, 1H), 2.99 (d, *J*=13.5 Hz, 1H), 2.77 (d, *J*=13.5 Hz, 1H), 2.02 (m, 2H), 1.76–1.42 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 141.3 (CH), 135.6 (C), 130.5 (CH), 128.1 (CH), 126.9 (CH), 122.1 (C), 115.2 (CH₂), 74.2 (C), 46.5 (C), 38.3 (CH₂), 36.1 (CH₂), 29.1 (CH₂), 22.2 (CH₂), 20.0 (CH₂); HRMS: calcd. for C₁₆H₁₉NO: 241.1467; found: 241.1462; compound 2: IR (neat, cm⁻¹): 3030 (aromatic C–H), 2231 (CN), 1698 (C=O); ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.23 (m, 5H), 2.83 (d, *J*=14.2 Hz, 1H), 2.69–2.61 (m, 1H), 2.60–2.41 (m, 3H), 2.59 (d, *J*=14.2 Hz, 1H), 2.31–2.23 (m, 1H), 2.11–2.02 (m, 1H), 2.10–1.70 (m, 5H), 1.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 214.9 (C), 135.0 (C), 130.2 (CH), 128.5 (CH), 127.5 (CH), 122.9 (C), 43.7 (CH₂), 42.5 (C), 40.3 (CH₂), 39.7 (CH₂), 33.3 (CH₂), 31.2 (CH₂), 28.3 (CH₂), 23.2 (CH₂); HRMS: calcd. for C₁₆H₁₉NO: 241.1467; found: 241.1465.
- 7. An inseparable mixture of two diastereomers (9:1) was obtained.
- 8. An inseparable mixture of two diastereomers (1:1) was used as the starting material.
- 9. Liu, H. J.; Zhu, J. L.; Shia, K. S. Tetrahedron Lett. 1998, 39, 4183-4186.
- (a) Imamoto, T.; Takitama, N.; Nakamura, K. Tetrahedron Lett. 1985, 26, 4763-4766; (b) Imamoto, T. Lanthanides in Organic Synthesis; Academic Press: New York, 1994; Section 5.4; (c) Liu, H. J.; Shia, K. S.; Shang, X.; Zhu, B. Y. Tetrahedron 1999, 55, 3803-3830.
- 11. (a) Carpenter, B. K. Tetrahedron 1978, 34, 1877-1884; (b) Wilson, S. R.; Misra, R. N.; Georgiadis, G. M. J. Org. Chem. 1980, 45, 2460-2468; (c) Zoeckler, M. T.; Carpenter, B. K. J. Am. Chem. Soc. 1981, 103, 7661-7663.